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LETTER TO THE EDITOR 

On spectral problems and compatibility conditions in 
multidimensions 

B G Konopelchenko 
Institute of Nuclear Physics, USSR Academy of Sciences, 630090 Novosibirsk, USSR 

Received 11 June 1987 

Abstract. A method for the construction of auxiliary linear problems suitable for the inverse 
spectral transform method is considered. An algebraic form of the compatibility conditions 
for these linear problems is discussed for the three-dimensional space. 

The starting point of the inverse spectral transform method is the representation of 
the non-linear differential equation as the compatibility condition of the certain set of 
auxiliary linear problems (see e.g. [ 11). The algebraic forms of these compatibility 
conditions are the well known Lax pair [2], the commutativity condition [ L , ,  L 2 ]  = 
L l L 2 -  L2Ll  = O  [3], Manakov's L-A-B triad [4] or Zakharov's algebraic system [SI. 
Recently Manakov and Zakharov have proposed a new method for the construction 
of the multidimensional auxiliary linear problems based on the non-local Riemann 
conjugation problem [6]. 

Here we present the general formulation of this non-local Riemann problem method 
in the generic multidimensional case and consider the possible algebraic forms of the 
compatibility conditions in multidimensions. 

The starting point of the Manakov-Zakharov method [6] is the non-local Riemann 
problem 

where A E @, x = (xI, . . . , xd) and $2 ,  G I  are boundary values of the analytic function 
on the contour r and R(A' ,  A, x)  is the certain matrix function. It is assumed that the 
function R obeys the equations 

a 
- R ( A ' , A , x ) = Z , ( ~ ' ) R ( A ' , A , X ) - R ( A ' , A , X ) Z , ( A )  i =  1, .  . . , d (2) ax,  

where Z , ( A )  are certain matrix functions and [ Z , ( A ' ) ,  Z k ( A ) ]  = O .  Then the operators D, 
( D f % ' a , f + f I , ( A ) )  are introduced and with the use of (1) and (2) the set of operators 
L, of the form L, = E n ,  qLl, ,,,,(x,, . . . , x d ) D r l , ,  . Ddn, which have no singularities on 
A is constructed. The compatibility of the linear system L,$ = 0 ( i  = 1 , .  . . , k )  is 
equivalent to the non-linear equation. Some concrete examples have been considered 
in [6]. 
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We would like to propose a scheme which naturally leads to the conjugation 
problem (1) and  its generalisations. We start with the formal expansion problem 

+2(A,  x )  = dA‘A(A’, x ) R ( A ’ ,  A, x )  (3) 

where A = ( A l , .  . . , A d ) ,  x = ( x , ,  . . . , x d ) ,  +2 and are matrix functions and  R(A‘,  A, x )  
is the certain matrix function. Note that all A ,  are independent variables. We assume 
that R ( A ’ ,  A, x )  satisfies the equations ( a ,  = a / a x , )  

a ,R(A’ ,A ,x )=A:R(A‘ ,h , x ) -R(A’ ,A ,x )A ,  i =  1,. . . , d (4) 

where [A, ,  A k ]  = 0. Denote DfWa,f+fA, .  The problem in which we are interested 
is to construct the operators L, of the form L, = E,,,, ,,,,, ULl, , n t , ( x ) D y l  . . . D 2  which 
have no singularities at A ,  +CO ( i  = 1,. . . , d ) .  Similar to [6] one has L l ( A ) t j 2 ( A x )  = 
SdA’ L,(A‘)I,!J,(A’, x ) R ( A ’ ,  A, x ) .  

It is not difficult to see that it is not possible to construct such an  operator L if all 
the variables A , ,  . . . , A d  are independent ones. Indeed, let the highest-order terms in 
L be cp(D1,. . . , D d ) .  So Lf= cp(D,, . . . , Dd)f+fcp (Al , .  . . , A , ) + A  where A contains 
lower-order terms in D ,  , . . . , Dd.  The term f c p ( A , ,  . . . , A d )  cannot be excluded at all. 

This consideration shows also that the only way to construct the operator L without 
singularities at A,  + CO is to impose some constraint on the variables A , , . . . , A d .  

Let the variables A ,, . . . , A d  be constrained by the algebraic equation 

c p ( A I , .  . . , A d )  = C =constant ( 5 )  

where c p ( A , ,  . . . , A d )  is some polynomial. 

Proposition. If the variables A , , .  . . , A d  in (3 )  obey the constraint ( 5 )  then the operator 
L which has no singularity at A ,  --* cc is of the form L = cp( D ,  , . . . , D d )  + A. 

Indeed L$=cp(D, , . . . ,  D d ) ( L + A 9 = c p ( a , ,  , . . . ,  a , , )*+(Lcp(A,  , . . . ,  &,)+A. The 
highest singularities on A , ,  . . . , A d  which are collected to the term $ c p ( A , ,  . . . , A d )  are 
annihilated due to the constraint ( 5 ) .  The singularities of the lower order are annihilated 
by the procedure described in [ 6 ] .  

Example. c p ( A , , .  . . , A d )  = A:+. . . + A :  =constant. The corresponding operator L is 
L=a2,,+ . . .+  a2,,+z,,, d uta,,+ W. 

Now let us introduce the constraint 

c p , ( A , ,  . . . , A d )  = C, =constant ( a  = 1,. . .  , n). ( 6 )  
Thus we are able to construct n operators L,  without singularities. Let us consider 
the system of n linear equations 

L,* = 0 CY = 1 , .  . . , n. (7)  

A necessary condition of the compatibility of this system is the existence of a non-empty 
cross section of the surfaces (6). If the cross section of the surfaces (6) is empty then 
the system ( 7 )  has no non-trivial solution. 

Let the constraints (6) be independent (i.e. all functions cp, ( A  , , . . . , A d  ) are algebrai- 
cally independent) and their cross section S has a generic complex dimension d - n. 



Letter to the Editor L1059 

Let us parametrise (uniformise) this cross section S by d - n variables p l  , . . . , pd-,, . 
The common solutions of the corresponding system (7 )  depend on these uniformised 
variables p-.  For these common solutions of (7) the relation (3 )  is equivalent to 

where p = ( p l , .  . . , Pd-,,) and p ( p ’ )  is the certain measure on the manifold S. One 
can consider (8) as the ( d  - n)-dimensional generalisation of the non-local Riemann 
conjugation problem ( l ) ,  namely as the problem of construction of the (possibly 
analytic) function J, whose boundary values I,!J~ on the ( d  - n - 1)-dimensional 
surface r are related by (8) with the certain matrix function R ( p ’ ,  k, x). Unfortunately 
the problem (8) has so far been effectively solved only in the one-dimensional case 
d - n = 1 (see, e.g., [ 6 ] ) .  In this case we arrive at (1) ( p I  A )  and can construct the 
linear system (7) by the method given in [6]. The possibility of the generalisation of 
( 1) to the multidimensional manifolds has been discussed by Manakov. 

At the three-dimensional space (d  = 3) we have two independent constraints 
qO(AI, A 2 ,  A,) = C, (a = 1,2) and dim S ’ =  1 in the generic case. Let us consider a few 
illustrative examples. 

( i )  Fsr constraints of the form 

where A,,  B, are polynomial, one has two operators 

L, = A,(ax3)ax, - B,(ax3) i = 1 , 2  (10) 

where A,(d,,) and E,(d, , )  are differential operators over xj such that A, + A,(d,,) and 

I?, + &(ax3). The system (9) defines the one-dimensional manifold r which can 

obviously be parametrised by the single variable A 3  and A I  = Bl(A3)/Al(A3),  A 2 =  
B2(A3)/A2(A3). The case of one marked variable xj has been considered in [5, 61. 

x - r  

X’5 

(i i)  The second example is 

9, = A: - U’A: = constant 

9 2  = A J +  P ( A I ,  A,) = O  

( 1 l a )  

(1 lb)  

where U* = * 1 and P (  A , A 2 )  is an arbitrary polynomial. The corresponding operators 
are 

where U , ( x ) ,  U 2 ( x ) ,  W ( x )  are functions and P(d,, , a,) is the differential operator 
such that + P(a,, , a.+). The operators of the form (12) and corresponding hierar- 

chies of integrable equations have been considered in [4, 5, 7-10]. The uniformised 
variable for (11) can be chosen as p = A , + u A 2 .  The systems integrable by (12) and 
invariant under the rotations on the plane (x, , x2) correspond to P = P(A: - u * A : ) .  
For such integrable systems by virtue of (1 1 a )  one has A, = constant, corresponding 
to the trivial evolution law in the variable x, and to the linearisable systems. An 

X - X  



L1060 Letter to the Editor 

example of such a rotationally invariant system is 

which corresponds to 

where A = a ’ , , + a ; > ,  E is a constant, cr2=-1  and P=A:+A: .  The system (13) is 
linearisable by the introduction of the gauge variable g ( x ) :  uk = 2a,, In g and W = 
- g - ’ A g .  The system (13) is equivalent to the heat equation for g, i.e. a g / a x 3 +  EAg = 0. 
In a similar manner one can consider instead of ( 1 1 )  the case cpI = c p l ( A l ,  A,) = C. 

(iii) Let A I ,  A 2 ,  A 3  be the matrix-valued commuting variables and  let the constraints 
be 

Since 9 1 2 $ A 3  - ( P , ~ $ A , +  ( ~ 2 3 $ A 1 =  0 then only two of the constraints (15) are indepen- 
dent. Their cross section r is the one-dimensional one and possesses the rational 
uniformisation A ,  = A , / ( A  -A:” )  ( i  = 1 , 2 , 3 ) ,  A E C. The description of the rational 
curves by the quadrics has been discussed in [ l l ] .  

The construction of the operators L,k of the form (16) (up  to the redefinition 
u:k + (A:’’- A Y ) )  u:k) have been considered in [6] commencing with the problem ( I ) ,  
with I ,  = A , / ( A  -A:” )  and with the corresponding three-dimensional chiral-fields-type 
model equations ( w,k = 0) 

where ufk = -[(Ay’ -A lo ’ )agk /dx ,  + g , A j ] g i l  and & ( X i ,  X 2 ,  X 3 )  ( k  = 1 ,2 ,  3) are squared 
matrices. The summation over repeated indices in ( 1 5 ) - (  17) is absent. 

system (7) at d = 3, i.e. for the system 
Now we will discuss the algebraic form of the compatibility conditions for the 

L , * = O  L2* = 0. ( 1 8 )  

In the general case the sufficient condition for the compatibility of the system (18) is 

c, LI + c2 L2 = 0 (19) 



letter to the Editor L1061 

where C, and C2 are certain non-degenerate differential operators or equivalently 

[ L , ,  L21= BlL ,  + B2L2 (20) 

where E ,  = -C, - L, and 8, = L ,  - C 2 .  So in the general case the algebraic form of 
the compatibility condition is the quartet representations (19) or (20). In the particular 
case B2 = 0 we arrive at the Manakov triad representation. Finally, at B, = B2 = 0 we 
have the usual commutativity condition [ L , ,  L2] = 0 [l] .  

Examples of non-linear systems representable in the form (19) and (20) are systems 
which have operators L , ,  L2 of the form (10) (A, # 1 ) .  In the case C, = 
D,(a,)a,,- Fl(ax3), C2 = D,(a,,)a,, - F2(ax3) ,  where D,, F, are differential operators over 
x 3 ,  equation (19) is equivalent to the system of algebraic compatibility conditions 
found in [5] ( x 3 + x ,  x , + y ,  x2+ t ) .  

An example of a system representable in the form (19) is 

which has been found by Zakharov [ 5 ] ,  for which 

L ,  = a,a, - ua, - p, L, = axa ,  - Va,  - p, 

and 

C, = ( U - v)a,a, + ( v2 - uv + U, - v,)a, + ( u - v)( u, - p, ) 

~ , = - ( ~ - v ) a , a , + ( ~ ~ - ~ v - ~ , + v , ) a , - ( u - v ) ( v , . - ~ ~ ) .  (22) 

For operators of the form (12) we have the Manakov triad representation [4,6]. 
Equation (19) is invariant under the ‘orthogonal’ transformations 

L, + L: = 1 QikLk i = l , 2  (23) 

where Qkl  and Q,k are arbitrary differential operators which obey the constraint 
zf= , Qk,Q,, = &. S O  the non-linear integrable system representable in the form (19) 
possesses infinitely many operators L, and C, defined up to the transformations (23). 
The uncertainty (23) can be used for the choice of appropriate operators L 1 ,  L , .  At 
the case C2 = L ,  ( B2 = 0) (Manakov triad representation) the transformations (23) are 
reduced to the transformations L2+ L; = Lz+  Q2,  L ,  and C ,  -$ Cl, = C ,  - L I Q z l  con- 
sidered in [12]. The use of this uncertainty allows one [ lo]  to prove the existence of 
the matrix commutativity representations [ E , ,  E,]  = 0 in addition to the known 
Manakov triad representation for the integrable systems considered in [7-91. This is 
also valid for the systems of the type (12) with L ,  =Xz,f“_TN U,,, , , (X,,  x 2 ,  x,)a:,a; [lo]. 

For systems which contain the variables x ,  , x 2 ,  x3 more symmetrically, condition 
(14) can be also represented in an equivalent more symmetric form. For example, for 
the three-dimensional chiral-fields-type equations (17) associated with the operators 
L,k (16) (divided by (Ajo’ -A( ,O) )  the compatibility condition is equivalent to the system 
of operator equalities 

k = l  
CJ + C :  = 1 C k Q k t  

, = I  

[ L t k ,  L n k l  = ff,nkLtn +PinkL,k + Y i n k L n k  

i , k , n = l , 2 , 3  i # k  i # n  n # k  (24) 
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where there is no summation over repeated indices and 

Note that non-commutative algebraic representations of the compatibility condi- 
tions different from (20) and (24) have been considered in the other contexts in [ 13, 141. 

I am grateful to V E Zakharov and S V Manakov for useful discussions. 
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